
7th ISE & 8th HIC 
Chile, 2009 

 

 

DECISION MAKING UNDER SEVERE UNCERTAINTIES FOR 
FLOOD RISK MANAGEMENT: A CASE STUDY OF INFO-GAP 

ROBUSTNESS ANALYSIS 
 

JIM W. HALL, HAMISH HARVEY 
School of Civil Engineering and Geosciences, Newcastle University,  

Newcastle upon Tyne, NE1 7RU, UK 
 

Flood risk analysis is subject to uncertainties, often severe, which have the potential to 
undermine engineering decisions. This is particularly true in strategic planning, which 
requires appraisal over long periods of time. Traditional economic appraisal techniques 
largely ignore this uncertainty, preferring to use a precise measure of performance, which 
affords the possibility of unambiguously ranking options in order of preference. In this 
paper we describe an experimental application of information-gap theory, or info-gap for 
short to a flood risk management decision. Info-gap is a quantified non-probabilistic 
theory of robustness. It provides a means of examining the sensitivity of a decision to 
uncertainty. Rather than simply presenting a range of possible values of performance, 
info-gap explores how this range grows as uncertainty increases. This allows 
considerably greater opportunity for insight into the behaviour of our model of option 
performance. The information generated may be of use in improving the model, refining 
the options, or justifying the selection of one option over the others in the absence of an 
unambiguous rank order. Secondly, we demonstrate the possibility of exploring the value 
of waiting until improved knowledge becomes available by constructing options that 
explicitly model this possibility.  

INFORMATION-GAP ROBUSTNESS ANALYSIS 

Information-gap or info-gap theory [2] provides a quantified theory of robustness. A 
robust option is one that performs well even under future conditions that deviate from our 
best estimate. Robustness analysis is thus a tool for handling uncertainty as it influences 
engineering decisions. Info-gap also examines opportunity, the propitious side to 
uncertainty, by helping to identify options that may be prone to desirable outcomes under 
uncertain conditions.  

The vast majority of previous treatments of uncertainty in flood risk management 
decisions have relied upon probabilistic uncertainty representation and normative 
decision making based upon maximisation of expected utility. The main criticisms of this 
approach (see for example refs [3] and [6]) relate to the estimation of probability 
distributions under conditions of severe uncertainty [12] and the impossibility of deriving 
rules for rational choice in group situations [1], which flood risk management decisions 
almost always are. In practice populations of data are finite and there are practical limits 
to the quantity of information that can be elicited from experts. In both cases some further 
assumption is required in order to construct a probability distribution. The problem 



becomes particularly acute in situations of very scarce data and where experts express 
indecision about an uncertain quantity and cannot be induced to provide further 
information in the appropriate probabilistic format. A recourse of the probabilistic analyst 
in the face of indeterminacy is to adopt a uniform probability distribution. However, as 
Keynes [8] demonstrated, incautious adoption of the uniform distribution can lead to 
contradictions.  

In response to these criticisms a number of alternatives have been proposed [11], 
which in particular seek to exploit the potential of set-based uncertainty representations to 
deal represent ambiguous information. The most noteworthy of these approaches in terms 
of their application in hydraulic engineering and hydrology is fuzzy set theory, but as Klir 
and Smith [10] demonstrate, fuzzy set theory and probability theory can be generalised 
within the theory of imprecise probabilities [13].  

All of these approaches rely upon some normalised measure being applied over the 
space of possibilities. Info-gap theory, but contrast does not employ normalised measure 
at all, so does not fit anywhere within the information-theoretic hierarchy of theories of 
uncertainty developed by Klir [9]. Rather, uncertainty is represented by a family of 
nested sets bounding the variation of system behaviour about some nominal value . The 
size of the possible departure from  (in other words the horizon of uncertainty) is 
parameterized by a hyper-parameter, . Each value contained within a set  
represents a possible outcome. In an estuarine flood risk management problem,  might 
be the rate of increase in relative mean sea level over the appraisal period and  our 
current best estimate of this rate. Info-gap theory examines the performance of a set of 
alternative acts  (which might include the acts of raising defences at a certain time by 
a certain amount, of implementing flood storage, of constructing a barrier) as  varies 
within the set , which gets progressively bigger as  increases. No attempt is 
made to apply any form of measure function, such as a probability density function, over 

. Instead the approach examines the performance of design options at different horizons 
of uncertainty. An assumption remains that values of  become increasingly unlikely as 
they diverge from .  

For each act  and value of  there will be a corresponding reward , which is 
a scalar measure of how the act performs under the conditions defined by . The reward 
function might, for example, be the Net Present Value that is yielded by an act under a 
given set of conditions. At a given horizon of uncertainty  there will be a set of possible 
performances (which collapses to a singular value  at ), and within that set 
there will be minimum and maximum levels of performance.  

The robustness and opportunity functions represent how these lower and upper 
bounds on possible performance vary with . They are defined in terms of two 
performance targets  and . Info-gap is a theory of robust satisficing, in that it seeks to 
identify acts that perform acceptably well under a wide range of conditions, in contrast to 
normative decision theory, which seeks to maximise expected utility under assumed 
conditions. The level of performance that is deemed acceptable is denoted . The 



robustness function, , measures of the maximum uncertainty that can be borne 
whilst ensuring a critical level of reward, : 

  (2.1) 

Only at  can the nominal level of performance  be guaranteed. For any 
value of  it is clear that . There is a trade-off here, 
in that robustness is sacrificed as the requirement for reward becomes increasingly 
demanding.  

The robustness function reflects system performance with respect to the pernicious 
effects of uncertainty. However, uncertainty can also yield unexpectedly good reward, 
which is represented with the opportunity function, , a measure of the minimum 
level of uncertainty required to enable a ‘windfall’ level of reward, : 

  (2.2) 

Since the robustness function expresses immunity against failure ‘bigger is better’. 
Conversely, when considering the opportunity function ‘big is bad’ [2]. Typically values 
for windfall reward will be far greater than those for critical reward. In addition the 
different behaviours of the robustness and opportunity functions for alternative decision 
options provides an insight into the potential positive and negative impacts of 
uncertainty. 

Info-gap analysis has found applications in disciplines as diverse as economics, anti-
terrorism and environmental protection [2], all of which are subject to severe 
uncertainties. Since flood risk management decisions can also be subject to severe 
uncertainties, making the application of info-gap theory in this domain particularly 
appealing. 

EXAMPLE 

Decision problem 

Consider an estuary, with property located in the adjacent floodplain. Relative mean sea 
level is increasing, as is the vulnerability of the properties (in terms of the damage caused 
by a given depth of flood water). Flood risk managers must choose which of set of flood 
risk management options  to implement in response to these changes.  

For a given option, conventional economic appraisal compares the beneficial 
reduction in expected damage relative to some base case  with the cost of 
implementation. A standard performance (or “reward”) measure is net present value 
(NPV). Let  and  denote respectively the expected annual damage and costs of 
implementation associated with option  in year , where  is the duration of the 
appraisal period in years. Assuming perfect knowledge of future conditions, NPV would 
be a function only of the option . In order to take uncertainty regarding those conditions 



into account, we parameterise also on , a vector specifying those conditions. The Net 
Present Value of option  is then given by equation (6.1), where  and  must also 
be defined in terms of .. 

  (6.1) 

Info-gap uncertainty model 

We will consider three sources of uncertainty: cost error , rate of increase of 
vulnerability  and rate of increase in mean sea level , . 

Costing is notoriously difficult, and all the more so in a strategic planning context 
where it is only possible to develop indicative costs. We express costing error in terms of 
cost overrun. Values of  of 0, -50% and 100% represent, respectively, a perfect cost 
estimate and estimates of twice and half actual costs. HM Treasury guidelines suggest 
that projects should show positive net benefit under a 60% cost overrun. This value is 
taken as a best estimate value for cost error. A recent summary of cost overruns on UK 
highway construction projects nearing completion included values in the interval [-14%, 
+220%]. These are taken as indicative for construction in general. Since the costing used 
in strategic analysis is necessarily less detailed it might be expected that the errors could 
be larger. We extend the range of possible error to account for this, setting the bounds at 

 to [-50%,400%] with bounds for other values of  found by linear interpolation. 
The result is an asymmetric model in which the upper bound on cost error departs more 
rapidly from the best estimate with increasing  than the lower bound. 

Expected damage is a function not only of hydrological and hydraulic terms, but also 
of the value of assets at risk in the floodplain, which we refer to as “vulnerability”. We 
expect this to increase as a result of economic growth, but are uncertain as to the rate of 
increase. The annual compound rate of increase in vulnerability  is assumed to be 
constant over the appraisal period. The influence of economic growth on flood risk was 
explored in by Evans et al. [4], from which we obtain likely multipliers on flood risk for 
the 2080s ranging from 6.6 to 36. These values, converted to annual rates of growth 
assuming compound growth, were assigned . The best estimate was taken as the 
mean of these values, . 

In coastal and estuarial waters, a major driver of changing flood risk is increasing 
relative mean sea level. The difficulty of forecasting this rate over strategic planning time 
scales is a major source of uncertainty. Relative mean sea level is assumed to increase 
linearly over the appraisal period with annual rate m/year. IPCC [7] suggests a best 
estimate rate of regional time-mean sea level rise of 6.4mm/year, and the minimum and 
maximum rates suggested are 2.1mm/year and 10.1mm/year respectively. These were 
taken as the bounds at an uncertainty level corresponding with . In addition to these 
values, at  the present day rate of sea level rise, 1.6mm/year, was taken as a lower 
bound and combined with a plausible upper extreme of 22mm/year. Exponential curves 



were fitted to these data, giving an uncertainty model which scales non-linearly and 
asymmetrically from the best estimate with increasing alpha. The behaviour of the 
resulting info-gap uncertainty model is depicted graphically in Figure 1, where coloured 
boxes indicate the nested sets associated with particular values of . 

Options 

Four flood defence options are considered. These are: 
1. Raise defences in 2025 to levels found to be optimal assuming an annual rate of 

increase of relative mean sea level at the mouth of the Thames consistent with 
current best estimates of 2100 level. (Assume that sea level will rise at a constant 
rate between now and 2100.) 

2. Raise defences in 2025 to levels found to be optimal assuming an annual rate of 
increase of relative mean sea level at the mouth of the Thames consistent with the 
upper bound on the IPCC range of 2100 levels. 

3. Raise defences in 2050 to levels optimal for actual sea level rise, which is assumed 
to be known by the time works must begin. 

4. As 3, but implement temporary works in 2025 to increase the standard of defence. It 
is assumed that, since the design life of these defences is shorter than those of 

 
Figure 1 Info-gap uncertainty model. Boxes show the boundaries of =0.1, 0.25, 0.5, 1.0, 1.5, 2.0. Also plotted 
are trajectories of minimum and maximum performance (corresponding with robustness and opportuneness) 
through uncertain parameter space. Traces start from the best estimate ( ) and diverge as alpha increases. 
Solid lines show the parameters associated with the minimum performance at a given alpha (robustness), while 
dashed lines show the maximum (opportuneness).  



permanent works, the cost will be considerably lower. The reliability of temporary 
and permanent works is assumed to be the same. 
Options 3 and 4 are intended to capture the assumption that scientific knowledge 

regarding sea level rise will improve with time. We model the situation of reduction in 
uncertainty through scientific research, somewhat simplistically, by assuming that the 
rate of increase in relative mean sea level will be known perfectly by the 2040s, allowing 
defences to be built in 2050 which are optimised to the exact actual rate of increase. 

Risk and cost models 

The risk model used in this example analysis is based on the UK Environment Agency 
IA8 model as described by Gouldby et al. [5]. A very simple cost model is used, with a 
fixed component representing mobilisation cost and a two-part piecewise linear variable 
component such that crest raising becomes more expensive above a threshold. We 
assume that the cost of implementing crest level raising by temporary works is 30% of 
permanent works of the same scale, and that their removal costs one third of much as 
their construction cost. It would be straightforward to update this analysis to use an 
improved cost model, which could be derived from a combination of representative bills 
of quantities and data on past works of similar type. 

RESULTS 

A traditional economic appraisal might rank options on the basis of their Net Present 
Value. Under the assumption that the rate of sea level rise, rate of growth in vulnerability 
and the error in cost estimates all match our current best estimates (that is, that ),  
Option 4 (temporary work in 2025, permanent works in 2050) gains first place by a small 
margin: it provides much of the protection of option 1 but at lower present value cost as 
the cost of permanent defence raising is deferred by 25 years. Option 3 (do nothing until 
2050) performs least well, as it provides no protection from increasing expected annual 
damage due to rising sea levels through the period between 2025 and 2050. Option 2, a 
precautionary crest level raise in 2025, loses out marginally to option 1 as would be 
expected since option 1 was optimised for these conditions. The option ranking is 
therefore: . 

Error! Reference source not found. shows robustness curves for the four options. 
These curves show how minimum performance deteriorates as the horizon of uncertainty 
expands. At  the set of possibilities  collapses to contain only best estimate 
conditions, . As  increases and  encompasses an increasingly 
wide range of possible conditions, the guaranteed minimum performance drops rapidly 
for all options. Varying robustness curve gradient between options leads to curve 
crossing, implying a change in preference ordering for a decision based on minimum 
performance at a given horizon of uncertainty. Notice in particular that option 3 
(permanent defence raising in  
 



 2050), which initially performs worst, deteriorates less quickly with increasing  and at 
high alpha performs almost as well as option 4 (early temporary and late permanent 
works). 

To fully 
understanding the 
form of the robustness 
curves requires some 
exploration of the data 
from which they are 
derived. Recall that 
these curves show, 
respectively, the 
minimum and 
maximum 
performance 
associated with an 
option at a given 
horizon of uncertainty 

. These minima and 
maxima relate to 
particular points in the 
three-dimensional 
uncertain parameter space . Ordered by increasing , the set of points associated 
with a robustness curve describes a trajectory through parameter space. Visualisations of 
these trajectories can help reveal which of the uncertainties being considered are 
controlling the form of the robustness curve. 

Figure 3 shows such a visualisation for our example. Each subfigure shows a 
projection of the trajectories onto a pair of axes. All four options are plotted here. That 
their trajectories are in general not distinct is the first useful piece of information: all of 
the options respond to the uncertainties considered in the same way. In the present 
example this is unsurprising, as the options are structurally similar. 

The boxes shown in Figure 1 denote the surface of the uncertainty model, , 
for a few values of . We see in subfigure (b) that robustness tracks the corner of the 
uncertainty model associated with minimum rate of sea level rise and minimum rate of 
growth in vulnerability, from which we deduce that these uncertainties are controlling the 
form of the robustness curve. These uncertainties also exert control over the form of the 
opportuneness curve, with here the maximum rates of sea level rise and vulnerability 
growth being associated with the maximum opportunity for windfall benefit. From 
Figures 3(a) and (c) it is clear that cost error is also significant in terms of robustness, but 
not at all in terms of opportuneness as indicated by the random fluctuations. Close 
examination near the best estimate indicates that high cost overrun becomes a significant 
influence on robustness as  increases. 

 
Figure 2 Robustness curves at a discount rate of 4%. The lines show the 
minimum performance  that could occur at a given horizon of 
uncertainty . 



We find that the futures in which our options perform worst are associated with low 
rates of sea level rise and increase in vulnerability. Conversely, high rates of increase 
appear as an opportunity to win big. These results may at first seem counterintuitive, as 
we are used to thinking of sea level rise and increasing vulnerability as a source of “risk”. 
In this analysis, however, we are exploring not expected damage, but the net present 
value of engineering interventions.  

Risk and opportunity are two sides of the same coin. All four options perform very 
well under best estimate conditions, with large positive NPV, indicating that defence 
raising is, in a densely populated area such as the study area, a cost effective means of 
reducing flood risk. The present value risk reduction is far greater than the cost of 
constructing the defences required to obtain it. Deviations from best estimate parameter 
values that reduce benefit reduce performance more rapidly than those that increase cost. 
As mean sea level and vulnerability decrease, defence raising becomes increasingly 
expensive relative to the savings possible in present value damage. The converse is also 
true: high rates of sea level rise and growth in vulnerability increase the benefit to be 
gained by the relatively cheap mechanism of dyke building. 

At high values of , the options in which permanent works are implemented later 
offer better worst-case performance. The cases from which these results arise involve low 
potential benefit and high cost overrun. The result is that the opportunity cost associated 

 
Figure 3 Info-gap uncertainty model. Boxes show the boundaries of =0.1, 0.25, 0.5, 1.0, 1.5, 2.0. Also plotted 
are trajectories of minimum and maximum performance (corresponding with robustness and opportuneness) 
through uncertain parameter space. Traces start from the best estimate ( ) and diverge as alpha increases. 
Solid lines show the parameters associated with the minimum performance at a given alpha (robustness), while 
dashed lines show the maximum (opportuneness).  



with constructing defences is in these cases very high and delaying work is advantageous. 
At lower horizons of uncertainty losses from rising mean sea level prior to 2050 are 
sufficient to outweigh this. 

It is noteworthy that option 4, involving delayed permanent defence raising but early 
temporary works, was not one of the initial set of options. It was added as a result of the 
examination of the behaviour of the other options. This is significant because it indicates 
that info-gap analysis provides a tool not only useful in analysing options once they have 
been defined, but also in supporting the process of designing options. 

CONCLUSIONS 

We have described the formulation of a flood risk management decision relating to the 
timing of interventions. By modelling our assumptions about the way in which 
uncertainties will change in time, we have been able to explore the possible impact of 
these changes on the performance of different options (using Net Present Value as the 
performance measure). 

We have applied info-gap analysis to these options. The specific results of this 
analysis were that under conditions of high uncertainty about rates of change of key 
variables, options involving delaying in order to utilise improving scientific knowledge 
can provide better guaranteed minimum performance than those which involve 
implementing measures based on current best estimates of future conditions. 

Examination of the behaviour of the options initially tested generated insights which 
suggested that a hybrid option might offer some of the advantages of both schemes. This 
option (option 4) did indeed provide better guaranteed minimum performance over the 
range of horizons of uncertainty considered. 

This application confirmed that info-gap analysis generates information of potential 
value in choosing between options when uncertainty regarding the future values of key 
variables is high and the ranking of options is not possible. It also suggested that info-gap 
analysis may be a valuable tool in the process of designing options for robustness. 

ACKNOWLEDGEMENTS 

The work described in this publication was supported by the European Community’s 
Sixth Framework Programme through the grant to the budget of the Integrated Project 
FLOODsite, Contract GOCE-CT-2004-505420. This paper reflects the authors' views and 
not those of the European Community. Neither the European Community nor any 
member of the FLOODsite Consortium is liable for any use of the information in this 
paper. 

REFERENCES 

[1] Arrow, K. J., “Social Choice and Individual Values”, Yale University Press, (1951). 
[2] Ben-Haim, Y.,“Information-Gap Decision Theory: Decisions Under Severe Uncertainty”, 2nd 

Edition, Wiley, New York, (2006). 



[3] Beven, K. J., “Towards a coherent philosophy for modelling the environment”, Proceedings of 

the Royal Society: Mathematical, Physical & Engineering Sciences, Vol. 458, No. 2026, 

(2002), pp. 2465-2484. 

[4] Evans, E. P., J. D. Simm, C. R. Thorne, et al. 2008. “An update of the Foresight Future 

Flooding 2004 qualitative risk analysis”, Cabinet Office, London, (2008).  

[5] Gouldby, B., Sayers P.,  Mulet-Marti, J., Hassan, M. A. A. M., and Benwell, D.,. “A 

methodology for regional-scale flood risk assessment”, Proceedings of the Institution of Civil 

Engineers Water Management, Vol. 161, No. 3, (2008) pp. 169-182.  

[6] Hall, J.W., “Handling uncertainty in the hydroinformatic process”, J. Hydroinformatics, Vol. 

5, No. 4, (2003), pp. 215-232 

[7] IPCC, “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I 

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change”, Eds. 

Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. 

Miller, Cambridge University Press, Cambridge, United Kingdom, (2007). 

[8] Keynes, J.M., “A Treatise on Probability|, MacMillan, New York (1921). 

[9] Klir, G.J., “Generalized information theory: aims, results, and open problems”, Reliability 

Engineering and Systems Safety, Vol. 83, No. 1-3, (2004), pp. 21-38. 

[10] Klir, G.J. and Smith, R.M., “On measuring uncertainty and uncertainty-based information: 

recent developments”, Annals of Mathematics and Artificial Intelligence, Vol. 32, (2001) pp. 

5-33. 

[11] Klir, G.J. and Wierman, M.J., “Uncertainty-Based Information: Elements of Generalised 

Information Theory”, Physical-Verlag, New York (1999). 

[12] Levi, I., “Ignorance, probability and rational choice”, Synthese, Vol. 53 (1982), pp. 387-417. 

[13] Walley, P., “Statistical Reasoning with Imprecise Probabilities”, Chapman and Hall, London, 

(1991). 

 


