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Flood risk analysis is subject to uncertaintiesemfsevere, which have the potential to
undermine engineering decisions. This is partityleue in strategic planning, which
requires appraisal over long periods of time. Tiradal economic appraisal techniques
largely ignore this uncertainty, preferring to asprecise measure of performance, which
affords the possibility of unambiguously rankingtiops in order of preference. In this
paper we describe an experimental applicatioimfof mation-gap theory, or info-gap for
shortto a flood risk management decision. Info-gap iguantified non-probabilistic
theory of robustness. It provides a means of exagithe sensitivity of a decision to
uncertainty. Rather than simply presenting a ramigpossible values of performance,
info-gap explores how this range grows as uncdstaimcreases. This allows
considerably greater opportunity for insight intee tbehaviour of our model of option
performance. The information generated may be efimsmproving the model, refining
the options, or justifying the selection of oneioptover the others in the absence of an
unambiguous rank order. Secondly, we demonstratedbksibility of exploring the value
of waiting until improved knowledge becomes avdiaby constructing options that
explicitly model this possibility.

INFORMATION-GAP ROBUSTNESSANALYSIS

Information-gap or info-gap theory [2] provides aaqtified theory of robustness. A
robust option is one that performs well even under futorditions that deviate from our
best estimate. Robustness analysis is thus adodlaindling uncertainty as it influences
engineering decisions. Info-gap also examimgportunity, the propitious side to
uncertainty, by helping to identify options thatyr#e prone to desirable outcomes under
uncertain conditions.

The vast majority of previous treatments of undetyain flood risk management
decisions have relied upon probabilistic uncerjainépresentation and normative
decision making based upon maximisation of expeat#ity. The main criticisms of this
approach (see for example refs [3] and [6]) rel@tethe estimation of probability
distributions under conditions of severe uncenajb®] and the impossibility of deriving
rules for rational choice in group situations [dhich flood risk management decisions
almost always are. In practice populations of @da&finite and there are practical limits
to the quantity of information that can be elicifesin experts. In both cases some further
assumption is required in order to construct a @bdlty distribution. The problem



becomes particularly acute in situations of vergree data and where experts express
indecision about an uncertain quantity and cannetitduced to provide further
information in the appropriate probabilistic formatrecourse of the probabilistic analyst
in the face of indeterminacy is to adopt a unifgrrobability distribution. However, as
Keynes [8] demonstrated, incautious adoption of uh&orm distribution can lead to
contradictions.

In response to these criticisms a number of alteres have been proposed [11],
which in particular seek to exploit the potentifket-based uncertainty representations to
deal represent ambiguous information. The mostwmtéy of these approaches in terms
of their application in hydraulic engineering anditology is fuzzy set theory, but as Klir
and Smith [10] demonstrate, fuzzy set theory ammabability theory can be generalised
within the theory of imprecise probabilities [13].

All of these approaches rely upon some normalisedsure being applied over the
space of possibilities. Info-gap theory, but costtrdoes not employ normalised measure
at all, so does not fit anywhere within the infotima-theoretic hierarchy of theories of
uncertainty developed by Klir [9]. Rather, uncentgiis represented by a family of
nested sets bounding the variation of system bebawbout some nominal valtie The
size of the possible departure fream(in other words the horizon of uncertainty) is
parameterized by a hyper-parameter, Each value contained within a U («,u)
represents a possible outcome. In an estuarind flis& management probleramight
be the rate of increase in relative mean sea levet the appraisal period awudour
current best estimate of this rate. Info-gap theexgmines the performance of a set of
alternative act{d} (which might include the acts of raising defenaea certain time by
a certain amount, of implementing flood storagecoifistructing a barrier) asvaries
within the setU(«a,u), which gets progressively bigger asncreases. No attempt is
made to apply any form of measure function, suca peobability density function, over
a. Instead the approach examines the performandesifin options at different horizons
of uncertainty. An assumption remains that valuea become increasingly unlikely as
they diverge frona.

For each acd and value of: there will be a corresponding reweR(d, u), which is
a scalar measure of how the act performs undecdhditions defined bu. The reward
function might, for example, be the Net Presentuéahat is yielded by an act under a
given set of conditions. At a given horizon of urnammty o there will be a set of possible
performances (which collapses to a singular v.R(d, @) ata = 0), and within that set
there will be minimum and maximum levels of perfamme.

The robustness and opportunity functions reprebent these lower and upper
bounds on possible performance vary wth They are defined in terms of two
performance targe®. andr,,. Info-gap is a theory of robust satisficing, imtlfit seeks to
identify acts that perform acceptably well undevide range of conditions, in contrast to
normative decision theory, which seeks to maximégpected utility under assumed
conditions. The level of performance that is deemaedeptable is denote. The



robustness functiora(d, r.), measures of the maximum uncertainty that can dveeb
whilst ensuring a critical level of rewarry,:

a(d,r.) = max {a : min  R(d,u) > rc} (2.1)
welU (o, )

Only ata = 0 can the nominal level of performanR(d, @) be guaranteed. For any
value ofa > 0 it is clear tha(min,cy(a,q)R(d,u)) < R(d,u). There is a trade-off here,
in that robustness is sacrificed as the requirenfientreward becomes increasingly
demanding.

The robustness function reflects system performavitte respect to the pernicious
effects of uncertainty. However, uncertainty casoayield unexpectedly good reward,
which is represented with the opportunity functiB(d, Tw), & measure of the minimum
level of uncertainty required to enable a ‘windfivel of reward,

ﬁ(d, Tw) = min {(k : max  R(d,u) > 7'11,} (2.2)
ueU(a,a)

Since the robustness function expresses immuniynagfailure ‘bigger is better’.
Conversely, when considering the opportunity fumetbig is bad’ [2]. Typically values
for windfall reward will be far greater than thofm critical reward. In addition the
different behaviours of the robustness and oppdytdanctions for alternative decision
options provides an insight into the potential pesi and negative impacts of
uncertainty.

Info-gap analysis has found applications in disogd as diverse as economics, anti-
terrorism and environmental protection [2], all efhich are subject to severe
uncertainties. Since flood risk management decssioan also be subject to severe
uncertainties, making the application of info-gdpedry in this domain particularly
appealing.

EXAMPLE

Decision problem

Consider an estuary, with property located in th@a@ent floodplain. Relative mean sea
level is increasing, as is the vulnerability of flreperties (in terms of the damage caused
by a given depth of flood water). Flood risk managaust choose which of set of flood
risk management optiord; : i € 1,..., N to implement in response to these changes.

For a given option, conventional economic appraisainpares the beneficial
reduction in expected damage relative to some beessed, with the cost of
implementation. A standard performance (or “rewardieasure is net present value
(NPV). Letr; , andc; , denote respectively the expected annual damagecasis of
implementation associated with optibm yeary € [0,7'), whereT is the duration of the
appraisal period in years. Assuming perfect knogéedf future conditions, NPV would
be a function only of the opticd;. In order to take uncertainty regarding those dants



into account, we parameterise alsougra vector specifying those conditions. The Net
Present Value of optiod; is then given by equation (6.1), whe+;, andc; , must also
be defined in terms af..

N

R(d;,u) = Z

=0

—

m;s)y [(roy = riy) = iyl (6.1)

<

I nfo-gap uncertainty model

We will consider three sources of uncertainty: cestor u., rate of increase of
vulnerabilityu,, and rate of increase in mean sea lai e = [u., u,, u.]".

Costing is notoriously difficult, and all the mose in a strategic planning context
where it is only possible to develop indicativetso¥Ve express costing error in terms of
cost overrun. Values af,. of 0, -50% and 100% represent, respectively, &pecost
estimate and estimates of twice and half actualscé#M Treasury guidelines suggest
that projects should show positive net benefit ural&0% cost overrun. This value is
taken as a best estimate value for cost error.cAmesummary of cost overruns on UK
highway construction projects nearing completiotiided values in the interval [-14%,
+220%]. These are taken as indicative for constradh general. Since the costing used
in strategic analysis is necessarily less detailatight be expected that the errors could
be larger. We extend the range of possible erractmunt for this, setting the bounds at
a = 2 to [-50%,400%] with bounds for other valuesaofound by linear interpolation.
The result is an asymmetric model in which the ugprind on cost error departs more
rapidly from the best estimate with increasintghan the lower bound.

Expected damage is a function not only of hydralaband hydraulic terms, but also
of the value of assets at risk in the floodplaimjck we refer to as “vulnerability”. We
expect this to increase as a result of economiastir,obut are uncertain as to the rate of
increase. The annual compound rate of increaseuinexability «, is assumed to be
constant over the appraisal period. The influerfceconomic growth on flood risk was
explored in by Evans et al. [4], from which we dbthikely multipliers on flood risk for
the 2080s ranging from 6.6 to 36. These valuesyarted to annual rates of growth
assuming compound growth, were assign = 1. The best estimate was taken as the
mean of these valueu,, = 3.48%.

In coastal and estuarial waters, a major drivech@nging flood risk is increasing
relative mean sea level. The difficulty of fored@agtthis rate over strategic planning time
scales is a major source of uncertainty. Relatigmmsea level is assumed to increase
linearly over the appraisal period with annual rz;m/year. IPCC [7] suggests a best
estimate rate of regional time-mean sea level afsgé.4dmm/year, and the minimum and
maximum rates suggested arerhiyear and 10.1mm/year respectively. These were
taken as the bounds at an uncertainty level cooreipg witha = 1. In addition to these
values, aa = 2 the present day rate of sea level risemingear, was taken as a lower
bound and combined with a plausible upper extrefm@2mm/year. Exponential curves
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Figure 1 Info-gap uncertainty model. Boxes showlhendaries 064=0.1, 0.25, 0.5, 1.0, 1.5, 2.0. Also plotted
are trajectories of minimum and maximum performamaresponding with robustness and opportuneness)
through uncertain parameter space. Traces stamt ihe best estimatcx = 0) and diverge as alpha increases.

Solid lines show the parameters associated withriimemum performance at a given alpha (robustnessie
dashed lines show the maximum (opportuneness).

were fitted to these data, giving an uncertaintydetowhich scales non-linearly and
asymmetrically from the best estimate with incregsalpha. The behaviour of the
resulting info-gap uncertainty model is depictedpdnically in Figure 1, where coloured
boxes indicate the nested sets associated wititplartvalues ot.

Options

Four flood defence options are considered. These ar

1. Raise defences in 2025 to levels found to be optasauming an annual rate of
increase of relative mean sea level at the moutlthef Thames consistent with
current best estimates of 2100 level. (Assume s$hatlevel will rise at a constant
rate between now and 2100.)

2. Raise defences in 2025 to levels found to be optasauming an annual rate of
increase of relative mean sea level at the moutthefThames consistent with the
upper bound on the IPCC range of 2100 levels.

3. Raise defences in 2050 to levels optimal for acseal level rise, which is assumed
to be known by the time works must begin.

4. As 3, but implement temporary works in 2025 to @age the standard of defence. It
is assumed that, since the design life of thesendek is shorter than those of



permanent works, the cost will be considerably lowide reliability of temporary

and permanent works is assumed to be the same.

Options 3 and 4 are intended to capture the assmmfitat scientific knowledge
regarding sea level rise will improve with time. Wedel the situation of reduction in
uncertainty through scientific research, somewtlaipkstically, by assuming that the
rate of increase in relative mean sea level wilkbewn perfectly by the 2040s, allowing
defences to be built in 2050 which are optimisethtoexact actual rate of increase.

Risk and cost models

The risk model used in this example analysis iethamn the UK Environment Agency

IA8 model as described by Gouldby et al. [5]. Awsimple cost model is used, with a
fixed component representing mobilisation cost andio-part piecewise linear variable
component such that crest raising becomes morensige above a threshold. We
assume that the cost of implementing crest levsimg by temporary works is 30% of

permanent works of the same scale, and that theioval costs one third of much as
their construction cost. It would be straightfordiao update this analysis to use an
improved cost model, which could be derived fromoanbination of representative bills

of quantities and data on past works of similaetyp

RESULTS

A traditional economic appraisal might rank optians the basis of their Net Present
Value. Under the assumption that the rate of sesl lése, rate of growth in vulnerability
and the error in cost estimates all match our cailbest estimates (that is, thu = @),
Option 4 (temporary work in 2025, permanent work050) gains first place by a small
margin: it provides much of the protection of optib but at lower present value cost as
the cost of permanent defence raising is deferye@Sbyears. Option 3 (do nothing until
2050) performs least well, as it provides no pridacfrom increasing expected annual
damage due to rising sea levels through the pdréddleen 2025 and 2050. Option 2, a
precautionary crest level raise in 2025, loses matginally to option 1 as would be
expected since option 1 was optimised for theseditions. The option ranking is
thereforeds > dy > ds > ds.

Error! Reference source not found. shows robustness curves for the four options.
These curves show how minimum performance deteesras the horizon of uncertainty
expands. Aa = 0 the set of possibilitieU (a, @) collapses to contain only best estimate
conditions,U («, u) = {u}. As a increases anU(a, @) encompasses an increasingly
wide range of possible conditions, the guaranteednmim performance drops rapidly
for all options. Varying robustness curve gradidéatween options leads to curve
crossing, implying a change in preference ordeforga decision based on minimum
performance at a given horizon of uncertainty. blotin particular that option 3
(permanent defence raising in



2050), which initially performs worst, deterioratiess quickly with increasirajand at
high alpha performs almost as well as option 4lyemporary and late permanent

works).
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maxima  relate  to minimum performanceR(d,«) that could occur at a given horizon of
particular points in the uncertaintyu € U(a, @).

three-dimensional

uncertain parameter spal (o, u). Ordered by increasira, the set of points associated
with a robustness curve describes a trajectoryutiitgparameter space. Visualisations of
these trajectories can help reveal which of theeramties being considered are
controlling the form of the robustness curve.

Figure 3 shows such a visualisation for our examplach subfigure shows a
projection of the trajectories onto a pair of ax&.four options are plotted here. That
their trajectories are in general not distincthe first useful piece of information: all of
the options respond to the uncertainties considémethe same way. In the present
example this is unsurprising, as the options atestrally similar.

The boxes shown in Figure 1 denote the surfacéelncertainty modelU (o, @),
for a few values o&. We see in subfigure (b) that robustness tracksctirner of the
uncertainty model associated wittinimum rate of sea level rise andinimum rate of
growth in vulnerability, from which we deduce tlthése uncertainties are controlling the
form of the robustness curve. These uncertaint&s exert control over the form of the
opportuneness curve, with here timaximum rates of sea level rise and vulnerability
growth being associated with the maximum opporyuridr windfall benefit. From
Figures 3(a) and (c) it is clear that cost erral$® significant in terms of robustness, but
not at all in terms of opportuneness as indicatgdtHe random fluctuations. Close
examination near the best estimate indicates filgatdost overrun becomes a significant
influence on robustness adncreases.
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Figure 3 Info-gap uncertainty model. Boxes showltbendaries 0&4=0.1, 0.25, 0.5, 1.0, 1.5, 2.0. Also plotted
are trajectories of minimum and maximum performatm@responding with robustness and opportuneness)
through uncertain parameter space. Traces stantthie best estimat«x = 0) and diverge as alpha increases.
Solid lines show the parameters associated witmihénum performance at a given alpha (robustnegsile
dashed lines show the maximum (opportuneness).

We find that the futures in which our options pemfioworst are associated with low
rates of sea level rise and increase in vulnetgbiConversely, high rates of increase
appear as an opportunity to win big. These resaliy at first seem counterintuitive, as
we are used to thinking of sea level rise and exireg vulnerability as a source of “risk”.
In this analysis, however, we are exploring noteztpd damage, but the net present
value of engineering interventions.

Risk and opportunity are two sides of the same.caihfour options perform very
well under best estimate conditions, with largeifpas NPV, indicating that defence
raising is, in a densely populated area such asttiidy area, a cost effective means of
reducing flood risk. The present value risk reduttis far greater than the cost of
constructing the defences required to obtain itvi@t®ns from best estimate parameter
values that reduce benefit reduce performance namidly than those that increase cost.
As mean sea level and vulnerability decrease, defamising becomes increasingly
expensive relative to the savings possible in prtegalue damage. The converse is also
true: high rates of sea level rise and growth imerability increase the benefit to be
gained by the relatively cheap mechanism of dykielimg.

At high values o%, the options in which permanent works are impleteenater
offer better worst-case performance. The cases frhioh these results arise involve low
potential benefit and high cost overrun. The resuthat the opportunity cost associated



with constructing defences is in these cases vigity dnd delaying work is advantageous.
At lower horizons of uncertainty losses from risinggan sea level prior to 2050 are
sufficient to outweigh this.

It is noteworthy that option 4, involving delayedrmanent defence raising but early
temporary works, was not one of the initial sebpfions. It was added as a result of the
examination of the behaviour of the other optidiss is significant because it indicates
that info-gap analysis provides a tool not onlyfukse analysing options once they have
been defined, but also in supporting the proceskesigning options.

CONCLUSIONS

We have described the formulation of a flood risknagement decision relating to the
timing of interventions. By modelling our assumpso about the way in which
uncertainties will change in time, we have beeredblexplore the possible impact of
these changes on the performance of different npt{osing Net Present Value as the
performance measure).

We have applied info-gap analysis to these optidie specific results of this
analysis were that under conditions of high undetgaabout rates of change of key
variables, options involving delaying in order tilise improving scientific knowledge
can provide better guaranteed minimum performartan tthose which involve
implementing measures based on current best esSroéfuture conditions.

Examination of the behaviour of the options inltiabsted generated insights which
suggested that a hybrid option might offer soméhefadvantages of both schemes. This
option (option 4) did indeed provide better guagadt minimum performance over the
range of horizons of uncertainty considered.

This application confirmed that info-gap analysengrates information of potential
value in choosing between options when uncertaiegarding the future values of key
variables is high and the ranking of options is padsible. It also suggested that info-gap
analysis may be a valuable tool in the proces®sigthing options for robustness.
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